Problem

Source:

Tags: geometry, circumcircle, geometric transformation



As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.


Attachments: