Problem

Source: China ningbo ,12 Aug 2013

Tags: symmetry, pigeonhole principle, inequalities, graph theory, combinatorics proposed, combinatorics



In a group of $m$ girls and $n$ boys, any two persons either know each other or do not know each other. For any two boys and any two girls, there are at least one boy and one girl among them,who do not know each other. Prove that the number of unordered pairs of (boy, girl) who know each other does not exceed $m+\frac{n(n-1)}{2}$.