Problem

Source: China ningbo , 13 Aug 2013

Tags: inequalities, inequalities proposed



For any given positive numbers $a_1,a_2,\ldots,a_n$, prove that there exist positive numbers $x_1,x_2,\ldots,x_n$ satisfying $\sum_{i=1}^n x_i=1$, such that for any positive numbers $y_1,y_2,\ldots,y_n$ with $\sum_{i=1}^n y_i=1$, the inequality $\sum_{i=1}^n \frac{a_ix_i}{x_i+y_i}\ge \frac{1}{2}\sum_{i=1}^n a_i$ holds.