Problem

Source: USA TSTST 2013, Problem 6

Tags: function, number theory, algebra, functional equation



Let $\mathbb N$ be the set of positive integers. Find all functions $f: \mathbb N \to \mathbb N$ that satisfy the equation \[ f^{abc-a}(abc) + f^{abc-b}(abc) + f^{abc-c}(abc) = a + b + c \] for all $a,b,c \ge 2$. (Here $f^1(n) = f(n)$ and $f^k(n) = f(f^{k-1}(n))$ for every integer $k$ greater than $1$.)