Problem

Source: USA TSTST 2013, Problem 4

Tags: geometry, circumcircle, geometric transformation



Circle $\omega$, centered at $X$, is internally tangent to circle $\Omega$, centered at $Y$, at $T$. Let $P$ and $S$ be variable points on $\Omega$ and $\omega$, respectively, such that line $PS$ is tangent to $\omega$ (at $S$). Determine the locus of $O$ -- the circumcenter of triangle $PST$.