$2^k=-1,1$ mod $3$,so $n$ must be even.$2^k=2,4,1$ mod $7$,but $2^{2^n}=2$ mod $7$ if $n$ is even.but $2^2=4,2^4=2,2^6=1,2^8=4,...$ mod $7$,so $2^n=4$ if $n$ is in this form $2+6s$,where $s$ is natural.so finally $n$ is in the form $2+6s$ to divisible by $21$.