Problem

Source: Bulgarian IMO TST 2005, Day 2, Problem 2

Tags: geometry, incenter, circumcircle, trigonometry, trapezoid, geometric transformation, reflection



Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$