Let $x\ne 1,y\ne 1$ and $x\ne y.$ Show that if \[\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y},\] then \[\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y}=x+y+z.\]
Source: Finland 2012, Problem 2
Tags: algebra unsolved, algebra, system of equations
Let $x\ne 1,y\ne 1$ and $x\ne y.$ Show that if \[\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y},\] then \[\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y}=x+y+z.\]