Problem

Source: Finland 2013, Problem 3

Tags: trigonometry, geometry unsolved, geometry



The points $A,B,$ and $C$ lies on the circumference of the unit circle. Furthermore, it is known that $AB$ is a diameter of the circle and \[\frac{|AC|}{|CB|}=\frac{3}{4}.\] The bisector of $ABC$ intersects the circumference at the point $D$. Determine the length of the $AD$.