Find the number of sequences $(a_n)_{n=1}^\infty$ of integers satisfying $a_n \ne -1$ and \[a_{n+2} =\frac{a_n + 2006}{a_{n+1} + 1}\] for each $n \in \mathbb{N}$.
Source: Czech-Polish-Slovak 2006 Q5
Tags: calculus, integration, algebra unsolved, algebra
Find the number of sequences $(a_n)_{n=1}^\infty$ of integers satisfying $a_n \ne -1$ and \[a_{n+2} =\frac{a_n + 2006}{a_{n+1} + 1}\] for each $n \in \mathbb{N}$.