Find the smallest positive integer $n$ having the property that for any $n$ distinct integers $a_1, a_2, \dots , a_n$ the product of all differences $a_i-a_j$ $(i < j)$ is divisible by $1991$.
Source:
Tags:
Find the smallest positive integer $n$ having the property that for any $n$ distinct integers $a_1, a_2, \dots , a_n$ the product of all differences $a_i-a_j$ $(i < j)$ is divisible by $1991$.