Problem

Source: Czech-Polish-Slovak 2012, P5

Tags: geometry, perimeter, combinatorics unsolved, combinatorics



City of Mar del Plata is a square shaped $WSEN$ land with $2(n + 1)$ streets that divides it into $n \times n$ blocks, where $n$ is an even number (the leading streets form the perimeter of the square). Each block has a dimension of $100 \times 100$ meters. All streets in Mar del Plata are one-way. The streets which are parallel and adjacent to each other are directed in opposite direction. Street $WS$ is driven in the direction from $W$ to $S$ and the street $WN$ travels from $W$ to $N$. A street cleaning car starts from point $W$. The driver wants to go to the point $E$ and in doing so, he must cross as much as possible roads. What is the length of the longest route he can go, if any $100$-meter stretch cannot be crossed more than once? (The figure shows a plan of the city for $n=6$ and one of the possible - but not the longest - routes of the street cleaning car. See http://goo.gl/maps/JAzD too.)