Problem

Source: Czech-Polish-Slovak 2012, P4

Tags: ratio, geometry, circumcircle, area of a triangle, geometry proposed



Let $ABC$ be a right angled triangle with hypotenuse $AB$ and $P$ be a point on the shorter arc $AC$ of the circumcircle of triangle $ABC$. The line, perpendicuar to $CP$ and passing through $C$, intersects $AP$, $BP$ at points $K$ and $L$ respectively. Prove that the ratio of area of triangles $BKL$ and $ACP$ is independent of the position of point $P$.