Problem

Source: Czech-Polish-Slovak 2012, P3

Tags: geometry, circumcircle, cyclic quadrilateral



Let $ABCD$ be a cyclic quadrilateral with circumcircle $\omega$. Let $I, J$ and $K$ be the incentres of the triangles $ABC, ACD$ and $ABD$ respectively. Let $E$ be the midpoint of the arc $DB$ of circle $\omega$ containing the point $A$. The line $EK$ intersects again the circle $\omega$ at point $F$ $(F \neq E)$. Prove that the points $C, F, I, J$ lie on a circle.