a) Let $ABCD$ be a convex quadrilateral and $r_1 \le r_2 \le r_3 \le r_4$ be the radii of the incircles of triangles $ABC, BCD, CDA, DAB$. Can the inequality $r_4 > 2r_3$ hold? b) The diagonals of a convex quadrilateral $ABCD$ meet in point $E$. Let $r_1 \le r_2 \le r_3 \le r_4$ be the radii of the incircles of triangles $ABE, BCE, CDE, DAE$. Can the inequality $r_2 > 2r_1$ hold?
Problem
Source: Sharygin First Round 2013, Problem 11
Tags: inequalities, geometry, geometry proposed