Problem

Source: Sharygin First Round 2013, Problem 8

Tags: geometry, circumcircle, Asymptote, geometry proposed



Let $X$ be an arbitrary point inside the circumcircle of a triangle $ABC$. The lines $BX$ and $CX$ meet the circumcircle in points $K$ and $L$ respectively. The line $LK$ intersects $BA$ and $AC$ at points $E$ and $F$ respectively. Find the locus of points $X$ such that the circumcircles of triangles $AFK$ and $AEL$ touch.