Proof
${{2}^{{{\sin }^{4}}x-{{\cos }^{2}}x}}-{{2}^{{{\cos }^{4}}x-{{\sin }^{2}}x}}=\cos 2x\Leftrightarrow {{2}^{{{\sin }^{4}}x+1-{{\cos }^{2}}x}}-{{2}^{{{\cos }^{4}}x+1-{{\sin }^{2}}x}}=2\cos 2x\Leftrightarrow $
${{2}^{{{\sin }^{4}}x+{{\sin }^{2}}x}}-{{2}^{{{\cos }^{4}}x+{{\cos }^{2}}x}}=2\cos 2x\Leftrightarrow {{2}^{{{\sin }^{4}}x+{{\sin }^{2}}x}}\left( 1-{{2}^{{{\cos }^{4}}x+{{\cos }^{2}}x-{{\sin }^{4}}x-{{\sin }^{2}}x}} \right)=2\cos 2x$
${{2}^{{{\sin }^{4}}x+{{\sin }^{2}}x}}\left( 1-{{2}^{2\cos 2x}} \right)=2\cos 2x\Rightarrow 2\cos 2x\left( 1-{{2}^{2\cos 2x}} \right)\ge 0\Leftrightarrow \cos 2x=0$
$\Rightarrow {{2}^{{{\sin }^{4}}x+{{\sin }^{2}}x}}\left( 1-{{2}^{2\cos 2x}} \right)=2\cos 2x\Leftrightarrow \cos 2x=0\Leftrightarrow x\in \left\{ \pm \frac{\pi }{4}+\pi k,k\in \mathbb{Z} \right\}$
${{\cos }^{4}}x+{{\cos }^{2}}x-{{\sin }^{4}}x-{{\sin }^{2}}x=2\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)=2\cos 2x$