Problem

Source:

Tags: geometry, circumcircle, geometry unsolved



Let $ABC$ be a triangle and $D,E$ be points on $BC,CA$ such that $AD,BE$ are angle bisectors of $\triangle ABC$. Let $F,G$ be points on the circumcircle of $\triangle ABC$ such that $AF||DE$ and $FG||BC$. Prove that $\frac{AG}{BG}= \frac{AB+AC}{AB+BC}$.