Let $n$, $m$, and $k$ be positive integers satisfying $(n - 1)n(n + 1) = m^k$. Prove that $k = 1$.
Source: 2012 Baltic Way, Problem 16
Tags: number theory unsolved, number theory
Let $n$, $m$, and $k$ be positive integers satisfying $(n - 1)n(n + 1) = m^k$. Prove that $k = 1$.