Problem

Source: IMO Shortlist 1997, Q12

Tags: algebra, polynomial, modular arithmetic, congruence, IMO Shortlist



Let $ p$ be a prime number and $ f$ an integer polynomial of degree $ d$ such that $ f(0) = 0,f(1) = 1$ and $ f(n)$ is congruent to $ 0$ or $ 1$ modulo $ p$ for every integer $ n$. Prove that $ d\geq p - 1$.