Problem

Source: Bulgaria TST 2003 P3

Tags: induction, combinatorial geometry, combinatorics proposed, combinatorics



Some of the vertices of a convex $n$-gon are connected by segments, such that any two of them have no common interior point. Prove that, for any $n$ points in general position, there exists a one-to-one correspondence between the points and the vertices of the $n$ gon, such that any two segments between the points, corresponding to the respective segments from the $n$ gon, have no common interior point.