Let $ABCD$ be a circumscribed quadrilateral and let $P$ be the orthogonal projection of its in center on $AC$. Prove that $\angle {APB}=\angle {APD}$
Problem
Source: Bulgaria TST 2003 P5
Tags: Asymptote, geometry, trigonometry, trig identities, Law of Sines, geometry proposed
08.09.2012 19:34
[asy][asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(11cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 2, xmax = 7.5, ymin = -3.5, ymax = 3; /* image dimensions */ /* draw figures */ draw(circle((4.28,-1.12), 1.75)); draw((3.28,2.8)--(7.04,-1.7)); draw((7.04,-1.7)--(4.06,-3.18)); draw((4.06,-3.18)--(2.36,-1.82)); draw((2.36,-1.82)--(3.28,2.8)); draw((3.28,2.8)--(4.06,-3.18)); draw((4.28,-1.12)--(3.8,-1.18)); draw((3.8,-1.18)--(7.04,-1.7)); draw((3.8,-1.18)--(2.36,-1.82)); /* dots and labels */ dot((5.62,0),dotstyle); label("$E$", (5.66,0.06), NE * labelscalefactor); dot((3.28,2.8),dotstyle); label("$A$", (3.32,2.85), NE * labelscalefactor); dot((7.04,-1.7),dotstyle); label("$B$", (7.07,-1.65), NE * labelscalefactor); dot((2.57,-0.78),dotstyle); label("$H$", (2.6,-0.72), NE * labelscalefactor); dot((2.36,-1.82),dotstyle); label("$D$", (2.39,-1.77), NE * labelscalefactor); dot((4.28,-1.12),dotstyle); label("$O$", (4.32,-1.07), NE * labelscalefactor); dot((3.19,-2.48),dotstyle); label("$G$", (3.22,-2.43), NE * labelscalefactor); dot((4.06,-3.18),dotstyle); label("$C$", (4.09,-3.12), NE * labelscalefactor); dot((5.05,-2.69),dotstyle); label("$F$", (5.09,-2.63), NE * labelscalefactor); dot((3.8,-1.18),dotstyle); label("$P$", (3.83,-1.13), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy][/asy] Let $O$ be the center of the inscribed circle and let $E$, $F$, $G$, and $H$ be the points of tangency of the incircle to sides $AB$, $BC$, $CD$, and $DA$, respectively. Since $\angle OPC = \angle OFC = 90^\circ$, pentagon $OPGCF$ is cyclic with diameter $OC$. Similarly, pentagon $OPHAE$ is also cyclic with diameter $OA$. By the Law of Sines, \[\frac{\sin \angle EPB}{\sin \angle PEB} = \frac{BE}{BP} = \frac{BF}{BP} = \frac{\sin \angle FPB}{\sin \angle PFB}\] In addition, we have \begin{align*}\frac{\sin \angle EPB}{\sin \angle FPB} = \frac{\sin \angle PEB}{\sin \angle PFB} = \frac{\sin (180^\circ - \angle PEA)}{\sin (180^\circ - \angle PFC)} = \frac{\sin (180^\circ - \angle POA)}{\sin (180^\circ - \angle POC)} = \frac{\sin \angle POA}{\sin \angle POC}\end{align*} and \[\frac{\sin \angle POA}{\sin \angle POC} = \frac{\sin (180^\circ - \angle AHP)}{\sin (180^\circ - \angle PGC)} = \frac{\sin \angle PHD}{\sin \angle PGD} = \frac{\sin \angle HPD}{\sin \angle GPD}\] Thus $\frac{\sin \angle HPD}{\sin \angle GPD} = \frac{\sin \angle EPB}{\sin \angle FPB}$, and so we have that $\angle HPD = \angle EPB$ and $\angle GPD = \angle FPB$. Therefore, \begin{align*} \angle APB &= \angle APE + \angle BPE \\&= \angle AHE + \angle DPH \\&= \angle AEH + \angle DPH \\&= \angle APH + \angle DPH \\&= \angle APD\end{align*} as desired.
08.09.2012 20:36
by Newton theorem, $EH$,$FG$,$BD$ are concurrent at $M$. Apply Brianchon theorem to $AHDCFB$, $AEBCGD$ and $AC$,$BD$,$EG$,$HF$ are concurrent at $J$. Apply Pascal theorem to $EEHGGF$, $HHEFFG$ and $K$,$M$,$L$ are collinear. $AC$ is the polar of $M$ and $IM$ is perpendicular to $AC$ and $I$,$P$,$M$ are collinear. $1=(KB,KC/KJ,KL)=(B,D/J,M)$ and $\angle JPM=90^{\circ}$. Therefore $\angle APB=\angle APD$
Attachments:
19.12.2013 00:04
Let $R,S,T,U$ be the points of tangency of the incircle, and let $Q=RU \cap ST$, and $L,M$ be the midpoints of $RS,TU$. Since $\triangle QRS \sim \triangle QTU, \angle QLR =\angle QMT$, which means that $\angle QLI +\angle QMI =180$. But $Q,L,M$ are the inverses of $P,B,D$, so this means that $\angle BPI +\angle DPI=180$, which means $\angle BPC=\angle DPC$
Attachments:
bulgaria.pdf (428kb)
25.08.2015 18:16
robinpark wrote: Thus $\frac{\sin \angle HPD}{\sin \angle GPD} = \frac{\sin \angle EPB}{\sin \angle FPB}$, and so we have that $\angle HPD = \angle EPB$ and $\angle GPD = \angle FPB$. Why is this true? Thanks in advance!
27.02.2016 19:39
First we apply an inversion with center $O$ and power the radius of inscribed circle. We get the following problem
: Let $EFGH$ be a cyclic quadrilateral $A^{'},B^{'},C^{'},D^{'}$ midpoint of the sides $EH,EF,FG,GH$.Let $EH$,$FG$ intersect in $P^{'}$.Prove that $\angle OB^{'}P^{'}+\angle OD^{'}P^{'}=180^{\circ}$ For this we employ complex numbers (as ususal we denote the coordinate of a point by its small case letter)
30.11.2018 09:50
Bump ! Can someone answer this ? MathPanda1 wrote: Post #2 wrote: Thus $\frac{\sin \angle HPD}{\sin \angle GPD} = \frac{\sin \angle EPB}{\sin \angle FPB}$, and so we have that $\angle HPD = \angle EPB$ and $\angle GPD = \angle FPB$. Why is this true? Thanks in advance!
17.05.2019 09:46
solution becomes pretty easy if we use inversion with center O, since A’, B’, C’ and D’ become midpoints of line segments H’E’, E’F’, F’G’, G’H’, where E, F, G, H are points of tangency with sides AB, BC, CD, DA. After that, we’ll just have to figure out which angles should be same & notice similarity of triangles P’E’F’ and P’G’H’ to prove that.
17.05.2019 09:59
he showed that $\angle HPG = \angle HPD + \angle GPD = \angle EPB + \angle FPB = \angle EPF$ so equality comes form lemma: if $\frac{\sin{x}}{\sin{(a-x)}} = \frac{\sin{y}}{\sin{(a-y)}}$, then $x = y$ Kayak wrote: Bump ! Can someone answer this ? MathPanda1 wrote: Post #2 wrote: Thus $\frac{\sin \angle HPD}{\sin \angle GPD} = \frac{\sin \angle EPB}{\sin \angle FPB}$, and so we have that $\angle HPD = \angle EPB$ and $\angle GPD = \angle FPB$. Why is this true? Thanks in advance!
17.05.2019 10:39
Do you mean $\frac{\sin{x}}{\sin{(a-x)}} = \frac{\sin{y}}{\sin{(a-y)}}$?