Is it true that for any permulation $a_1,a_2.....,a_{2002}$ of $1,2....,2002$ there are positive integers $m,n$ of the same parity such that $0<m<n<2003$ and $a_m+a_n=2a_{\frac {m+n}{2}}$
Source: Bulgaria TST 2003 P4
Tags: number theory proposed, number theory
Is it true that for any permulation $a_1,a_2.....,a_{2002}$ of $1,2....,2002$ there are positive integers $m,n$ of the same parity such that $0<m<n<2003$ and $a_m+a_n=2a_{\frac {m+n}{2}}$