Let $I$ be the incenter of triangle $ABC$. Lines $AI$, $BI$, $CI$ meet the sides of $\triangle ABC$ at $D$, $E$, $F$ respectively. Let $X$, $Y$, $Z$ be arbitrary points on segments $EF$, $FD$, $DE$, respectively. Prove that $d(X, AB) + d(Y, BC) + d(Z, CA) \leq XY + YZ + ZX$, where $d(X, \ell)$ denotes the distance from a point $X$ to a line $\ell$.
Problem
Source: Taiwan MO 1998, Problem 4
Tags: geometry, incenter, geometry unsolved, Taiwan, 1998, #4, geometric inequality