Problem

Source:

Tags: geometry, incenter, trigonometry, rhombus, geometry proposed



A point $M$ lies on the side $BC$ of square $ABCD$. Let $X$, $Y$ , and $Z$ be the incenters of triangles $ABM$, $CMD$, and $AMD$ respectively. Let $H_x$, $H_y$, and $H_z$ be the orthocenters of triangles $AXB$, $CY D$, and $AZD$. Prove that $H_x$, $H_y$, and $H_z$ are collinear.