Problem

Source: IMO Shortlist 2011, Number Theory 6

Tags: algebra, polynomial, number theory, IMO Shortlist, Divisibility



Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients, such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x).$ Suppose that for every positive integer $n$ the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1.$ Prove that $Q(x)$ is a constant polynomial. Proposed by Oleksiy Klurman, Ukraine