Problem

Source: IMO Shortlist 2011, Algebra 7

Tags: inequalities, algebra, IMO Shortlist



Let $a,b$ and $c$ be positive real numbers satisfying $\min(a+b,b+c,c+a) > \sqrt{2}$ and $a^2+b^2+c^2=3.$ Prove that \[\frac{a}{(b+c-a)^2} + \frac{b}{(c+a-b)^2} + \frac{c}{(a+b-c)^2} \geq \frac{3}{(abc)^2}.\] Proposed by Titu Andreescu, Saudi Arabia