Problem

Source: JBMO 2012

Tags: ceiling function, modular arithmetic, combinatorics proposed, combinatorics



On a board there are $n$ nails, each two connected by a rope. Each rope is colored in one of $n$ given distinct colors. For each three distinct colors, there exist three nails connected with ropes of these three colors. a) Can $n$ be $6$ ? b) Can $n$ be $7$ ?