Problem

Source: Baltic Way 1993

Tags: trigonometry, geometry proposed, geometry



In the triangle $ABC$, $|AB|=15,|BC|=12,|AC|=13$. Let the median $AM$ and bisector $BK$ intersect at point $O$, where $M\in BC,K\in AC$. Let $OL\perp AB,L\in AB$. Prove that $\angle OLK=\angle OLM$.