Problem

Source: Baltic Way 1993

Tags: geometry unsolved, geometry



Two circles, both with the same radius $r$, are placed in the plane without intersecting each other. A line in the plane intersects the first circle at the points $A,B$ and the other at points $C,D$, so that $|AB|=|BC|=|CD|=14\text{cm}$. Another line intersects the circles at $E,F$, respectively $G,H$ so that $|EF|=|FG|=|GH|=6\text{cm}$. Find the radius $r$.