An equilateral triangle is divided into $n^2$ congruent equilateral triangles. A spider stands at one of the vertices, a fly at another. Alternately each of them moves to a neighbouring vertex. Prove that the spider can always catch the fly.
Source: Baltic Way 1993
Tags: combinatorics unsolved, combinatorics
An equilateral triangle is divided into $n^2$ congruent equilateral triangles. A spider stands at one of the vertices, a fly at another. Alternately each of them moves to a neighbouring vertex. Prove that the spider can always catch the fly.