Problem

Source: Bulgarian National Olympiad 2012 Problem 1

Tags: number theory proposed, number theory



The sequence $a_1,a_2,a_3\ldots $, consisting of natural numbers, is defined by the rule: \[a_{n+1}=a_{n}+2t(n)\] for every natural number $n$, where $t(n)$ is the number of the different divisors of $n$ (including $1$ and $n$). Is it possible that two consecutive members of the sequence are squares of natural numbers?