Problem

Source: Sharygin Geometry Olympiad 2012 - Problem 22

Tags: geometry, circumcircle, cyclic quadrilateral, angle bisector, Sharygin Geometry Olympiad



A circle $\omega$ with center $I$ is inscribed into a segment of the disk, formed by an arc and a chord $AB$. Point $M$ is the midpoint of this arc $AB$, and point $N$ is the midpoint of the complementary arc. The tangents from $N$ touch $\omega$ in points $C$ and $D$. The opposite sidelines $AC$ and $BD$ of quadrilateral $ABCD$ meet in point $X$, and the diagonals of $ABCD$ meet in point $Y$. Prove that points $X, Y, I$ and $M$ are collinear.