Two perpendicular lines pass through the orthocenter of an acute-angled triangle. The sidelines of the triangle cut on each of these lines two segments: one lying inside the triangle and another one lying outside it. Prove that the product of two internal segments is equal to the product of two external segments. Nikolai Beluhov and Emil Kolev
Problem
Source: Sharygin Geometry Olympiad 2012 - Problem 21
Tags: geometry, geometric transformation, rotation, circumcircle, geometry unsolved
29.04.2012 20:48
Let the two transversals to $ABC$ be $DEF$ and $D_1E_1F_1,$ where we assume that $D$ and $E_1$ lie outside the triangle, and $D,D_1\in BC; E,E_1\in CA; F,F_1\in AB.$ Then we need to show that $FD\cdot F_1E_1=FE\cdot F_1D_1.$ Let the two lines passing through $H$ and parallel to $AB, AC$ meet $BC$ at points $M,N.$ Then note that the pencil $(HF,HF_1, HB, HM)$, on a counter-clockwise rotation of $+\dfrac{\pi}{2},$ gives the pencil $(HE_1, HE, HN, HC).$ Therefore, we see that $\dfrac{BF}{CE}=\dfrac{BF_1}{CE_1}\ \ (*).$ [asy][asy] import graph; size(15cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.97, xmax = 7.08, ymin = -1.54, ymax = 7.78; /* image dimensions */ pen qqzzqq = rgb(0,0.6,0); pen aqaqaq = rgb(0.63,0.63,0.63); pen ffttcc = rgb(1,0.2,0.8); pen qqqqff = rgb(0,0,1); pen ffttww = rgb(1,0.2,0.4); pen ffttcc = rgb(1,0.2,0.8); pen aqaqaq = rgb(0.63,0.63,0.63); pen ffwwqq = rgb(1,0.4,0); pen wwzzff = rgb(0.4,0.6,1); pen qqzzqq = rgb(0,0.6,0); pen ffttcc = rgb(1,0.2,0.8); pen ffffff = rgb(1,1,1); /* draw figures */ draw((0,4.53)--(-2,0), qqzzqq); draw((-2,0)--(6.34,0), aqaqaq); draw((6.34,0)--(0,4.53), ffttcc); draw((1.22,3.66)--(-4,0), qqqqff); draw((-2.42,6.25)--(1.96,0), ffttww); draw((0,4.53)--(-2.42,6.25), ffttcc); draw((-2,0)--(-6.47,0), aqaqaq); draw((0,4.53)--(3.17,0), ffwwqq); draw((0,4.53)--(-6.47,0), wwzzff); draw((-1.24,0)--(0,2.8), qqzzqq); draw((0,2.8)--(3.92,0), ffttcc); /* dots and labels */ dot((0,4.53),linewidth(2pt) + dotstyle); label("$A$", (0.08,4.61), NE * labelscalefactor); dot((-2,0),linewidth(2pt) + dotstyle); label("$B$", (-2,-0.2), S * labelscalefactor); dot((6.34,0),linewidth(2pt) + dotstyle); label("$C$", (6.43,-0.2), S * labelscalefactor); dot((0,2.8),linewidth(2pt) + dotstyle); label("$H$", (0.08,2.88), N * labelscalefactor); dot((-4,0),linewidth(2pt) + dotstyle); label("$D$", (-3.98,-0.2), S * labelscalefactor); dot((1.22,3.66),linewidth(2pt) + dotstyle); label("$E$", (1.3,3.74), NE * labelscalefactor); dot((-1.1,2.03),linewidth(2pt) + dotstyle); label("$F$", (-1.16,2.15), NW * labelscalefactor); dot((-2.42,6.25),linewidth(2pt) + dotstyle); label("$E_1$", (-2.4,6.32), NE * labelscalefactor); dot((-0.47,3.47),linewidth(2pt) + dotstyle); label("$F_1$", (-0.65,3.38), NW * labelscalefactor); dot((1.96,0),linewidth(2pt) + dotstyle); label("$D_1$", (2.05,-0.2), S * labelscalefactor); dot((-1.24,0),linewidth(2pt) + dotstyle); label("$M$", (-1.17,-0.2), S * labelscalefactor); dot((3.92,0),linewidth(2pt) + dotstyle); label("$N$", (4.01,-0.2), S * labelscalefactor); dot((-6.47,0),linewidth(2pt) + dotstyle); label("$X$", (-6.43,-0.2), S * labelscalefactor); dot((3.17,0),linewidth(2pt) + dotstyle); label("$Y$", (3.26,-0.2), S * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); shipout(bbox(ffffff,Fill)); [/asy][/asy] Now, observe that, if lines through $A$ and parallel to $DEF$ and $D_1E_1F_1$ meet $BC$ at $X$ and $Y,$ then \[\frac{BF}{AB}=\frac{BD}{BX},\ \frac{BF_1}{AB}=\frac{BD_1}{BY}, \ \frac{AC}{EC}=\frac{XC}{DC}, \ \frac{AC}{E_1C}=\frac{YC}{D_1C}.\] Therefore, \[\begin{aligned}\left|\frac{(B,C,D,X)}{(B,C,D_1,Y)}\right|&=\dfrac{\frac{DB}{DC}\cdot \frac{XC}{XB}}{\frac{D_1B}{D_1C}\cdot\frac{YC}{YB}}\\&=\frac{DB\cdot XC\cdot D_1C\cdot YB}{DC\cdot XB\cdot D_1B\cdot YC}\\&=\frac{DB}{XB}\cdot \frac{YB}{D_1B}\cdot \frac{XC}{DC}\cdot\frac{D_1C}{YC}\\&=\frac{BF}{AB}\cdot \frac{CE}{CA}\cdot \frac{F_1B}{AB}\cdot\frac{E_1C}{AC}\\&=\frac{BF\cdot CE}{F_1B\cdot E_1C}\\&=1 \ \ [\text{from} (*)].\end{aligned}\] So, we see that \[(AB,AC,AD,AX)\cap \overleftrightarrow{DEF}=(AB,AC,AD,AY)\cap \overleftrightarrow{D_1E_1F_1};\] Leading to \[\frac{FD}{FE}=\frac{F_1D_1}{F_1E_1}\implies FD\cdot F_1E_1=FE\cdot F_1D_1.\] $\Box$ P.S This problem is actually a well-known theorem (I can't seem to recall the name).
30.04.2012 14:07
Suppose, in the triangle $ ABC $, $ A_1B_1C_1,A_2B_2C_2 $ are the two perpendicular lines passing through the orthocenter $ H $ of $ ABC$. $ A_1,A_2 $ lie on $ BC $, $ B_1,B_2 $ lie on $ AC $ and $ C_1,C_2 $ lie on $ AB $. We will prove that there exists a spiral similarity that takes $ A_1,B_1,C_1 $ to $ A_2,B_2,C_2 $, in other words, if $ A_3,B_3,C_3 $ are the circumcenters of $ \odot HA_1A_2,\odot HB_1B_2, \odot HC_1C_2 $, then $ A_3,B_3,C_3 $ are collinear. Suppose, $ X$ is the foot of the perpendicular from $ H $ to $ B_3C_3 $. Now note that, $ \angle C_3HB_3=180-\angle BAC$. So $ \angle B'XC'=180-2\angle BAC $ where $ AA',BB',CC' $ are the altitudes of $ ABC$. So $ X $ lies on the nine-point circle of $ ABC $. Similarly define $ Y,Z $ for $ A_3B_3,A_3C_3 $. But note that, $ X,Y,Z $ lie on the circles with diameter $ HA_3,HB_3,HC_3 $ too. So $ X\equiv Y\equiv Z $. So $ A_3,B_3,C_3 $ are collinear. So done.