Problem

Source: Sharygin Geometry Olympiad 2012 - Problem 3

Tags: geometry, incenter, perpendicular bisector, angle bisector, geometry unsolved



A circle with center $I$ touches sides $AB,BC,CA$ of triangle $ABC$ in points $C_{1},A_{1},B_{1}$. Lines $AI, CI, B_{1}I$ meet $A_{1}C_{1}$ in points $X, Y, Z$ respectively. Prove that $\angle Y B_{1}Z = \angle XB_{1}Z$.