Find all quadruples $(a,b,c,d)$ of positive real numbers such that $abcd=1,a^{2012}+2012b=2012c+d^{2012}$ and $2012a+b^{2012}=c^{2012}+2012d$.
Source: Benelux Mathematical Olympiad 2012
Tags: inequalities, algebra proposed, algebra
Find all quadruples $(a,b,c,d)$ of positive real numbers such that $abcd=1,a^{2012}+2012b=2012c+d^{2012}$ and $2012a+b^{2012}=c^{2012}+2012d$.