Let $n$ be an even positive integer. An $n$-degree monic polynomial $P(x)$ has $n$ real roots (not necessarily distinct). Suppose $y$ is a positive real number such that for any real number $t<y$, we have $P(t)>0$. Prove that \[P(0)^{\frac{1}{n}}-P(y)^{\frac{1}{n}}\ge y.\]