Problem

Source:

Tags: geometry, circumcircle, parallelogram, geometry proposed



in an acute triangle $ABC$,$D$ is a point on $BC$,let $Q$ be the intersection of $AD$ and the median of $ABC$from $C$,$P$ is a point on $AD$,distinct from $Q$.the circumcircle of $CPD$ intersects $CQ$ at $C$ and $K$.prove that the circumcircle of $AKP$ passes through a fixed point differ from $A$.