Problem

Source:

Tags: inequalities, trigonometry, geometry proposed, geometry



in a right-angled triangle $ABC$ with $\angle C=90$,$a,b,c$ are the corresponding sides.Circles $K.L$ have their centers on $a,b$ and are tangent to $b,c$;$a,c$ respectively,with radii $r,t$.find the greatest real number $p$ such that the inequality $\frac{1}{r}+\frac{1}{t}\ge p(\frac{1}{a}+\frac{1}{b})$ always holds.