given a 4-digit number $(abcd)_{10}$ such that both$(abcd)_{10}$and$(dcba)_{10}$ are multiples of $7$,having the same remainder modulo $37$.find $a,b,c,d$.
Problem
Source:
Tags: modular arithmetic, number theory proposed, number theory
18.02.2012 09:26
7 divides a*10^3+bcd which implies 7 divides bcd - a.... also 7 divides 3*bcd+a Therefore 7 divides bcd therefore 7 divides a.. So a is 7. a + bcd is congruent to 10bcd + a mod 37. Hence 37 divides bcd.. So the possible nos are:- 7259 7518 7777
18.02.2012 11:34
That is unfortunately total garbage. Edited for some omissions. We have $\overline{abcd} = 10^3 a + 10^2 b + 10 c + d \equiv a - 11b + 10 c + d \pmod{37}$, so we need $a - 11b + 10 c + d \equiv d - 11c + 10 b + a \pmod{37}$, i.e. $21(b-c) \equiv 0 \pmod{37}$, thus $b=c$. On the other hand, we have $\overline{abcd} = 10^3 a + 10^2 b + 10 c + d \equiv -a + 2b + 3 c + d \pmod{7}$, so we need $5(b+c) \equiv 0 \pmod{7}$, thus $b=c=7$ or $b=c=0$. Then we need $a \equiv d \pmod{7}$, hence $a=d$, or $\{a,d\} = \{1,8\}$, or $\{a,d\} = \{2,9\}$. Thus the numbers are $1771,2772,\ldots,9779$, $1001,2002,\ldots,9009$,
18.02.2012 17:17
Oh so sorry the solution was really garbage... I misread the question I read dcba as bcda.. Really my eyes fool me these days.. Sorry.
19.02.2012 03:13
mavropnevma wrote: Thus the numbers are $1771,2772,\ldots,9779$. And also $\overline{n00n},\;1\leq n\leq 9$ since $x\equiv0\pmod 7$ for $0\leq x\leq 9$ means either $x=7$ or $x=0$.
20.02.2012 12:12
2009 might be an answer they were expecting