Problem

Source: Turkey TST 1998 Problem 6

Tags: algebra, polynomial, number theory proposed, number theory, combinatorial nullstellensatz



Let $f(x_{1}, x_{2}, . . . , x_{n})$ be a polynomial with integer coefficients of degree less than $n$. Prove that if $N$ is the number of $n$-tuples $(x_{1}, . . . , x_{n})$ with $0 \leq x_{i} < 13$ and $f(x_{1}, . . . , x_{n}) = 0 (mod 13)$, then $N$ is divisible by 13.