Problem

Source: Turkey TST 1998 Problem 5

Tags: geometry proposed, geometry



In a triangle $ABC$, the circle through $C$ touching $AB$ at $A$ and the circle through $B$ touching $AC$ at $A$ have different radii and meet again at $D$. Let $E$ be the point on the ray $AB$ such that $AB = BE$. The circle through $A$, $D$, $E$ intersect the ray $CA$ again at $F$ . Prove that $AF = AC$.