Problem

Source: Turkey TST 1998 Problem 1

Tags: symmetry, geometry, rectangle, geometric transformation, rotation, reflection, Pythagorean Theorem



Squares $BAXX^{'}$ and $CAYY^{'}$ are drawn in the exterior of a triangle $ABC$ with $AB = AC$. Let $D$ be the midpoint of $BC$, and $E$ and $F$ be the feet of the perpendiculars from an arbitrary point $K$ on the segment $BC$ to $BY$ and $CX$, respectively. $(a)$ Prove that $DE = DF$ . $(b)$ Find the locus of the midpoint of $EF$ .