Let $p\neq 3$ be a prime number. Show that there is a non-constant arithmetic sequence of positive integers $x_1,x_2,\ldots ,x_p$ such that the product of the terms of the sequence is a cube.
Source: Baltic Way 2011
Tags: arithmetic sequence, number theory proposed, number theory
Let $p\neq 3$ be a prime number. Show that there is a non-constant arithmetic sequence of positive integers $x_1,x_2,\ldots ,x_p$ such that the product of the terms of the sequence is a cube.