Let $a$ and $k$ be positive integers such that $a^2+k$ divides $(a-1)a(a+1)$. Prove that $k\ge a$.
Source: Baltic Way 1995
Tags: number theory proposed, number theory
Let $a$ and $k$ be positive integers such that $a^2+k$ divides $(a-1)a(a+1)$. Prove that $k\ge a$.