Problem

Source: Turkey NMO 2001 Problem 6

Tags: combinatorics unsolved, combinatorics



We wish to color the cells of a $n \times n$ chessboard with $k$ different colors such that for every $i\in \{1,2,...,n\}$, the $2n-1$ cells on $i$. row and $i$. column have all different colors. a) Prove that for $n=2001$ and $k=4001$, such coloring is not possible. b) Show that for $n=2^{m}-1$ and $k=2^{m+1}-1$, such coloring is possible.