Problem

Source: Turkey NMO 2001 Problem 1

Tags: geometry, circumcircle, trapezoid, geometry proposed



Let $ABCD$ be a convex quadrilateral. The perpendicular bisectors of the sides $[AD]$ and $[BC]$ intersect at a point $P$ inside the quadrilateral and the perpendicular bisectors of the sides $[AB]$ and $[CD]$ also intersect at a point $Q$ inside the quadrilateral. Show that, if $\angle APD = \angle BPC$ then $\angle AQB = \angle CQD$