A positive real number $a$ and two rays wich intersect at point $A$ are given. Show that all the circles which pass through $A$ and intersect these rays at points $B$ and $C$ where $|AB|+|AC|=a$ have a common point other than $A$.
Source: Turkey NMO 2000 Problem 5
Tags: geometry proposed, geometry
A positive real number $a$ and two rays wich intersect at point $A$ are given. Show that all the circles which pass through $A$ and intersect these rays at points $B$ and $C$ where $|AB|+|AC|=a$ have a common point other than $A$.