Problem

Source: Turkey NMO 2000 Problem 3

Tags: function, combinatorics proposed, combinatorics



Let $f(x,y)$ and $g(x,y)$ be real valued functions defined for every $x,y \in \{1,2,..,2000\}$. If there exist $X,Y \subset \{1,2,..,2000\}$ such that $s(X)=s(Y)=1000$ and $x\notin X$ and $y\notin Y$ implies that $f(x,y)=g(x,y)$ than, what is the maximum number of $(x,y)$ couples where $f(x,y)\neq g(x,y)$.