Problem

Source: Turkey NMO 1997 Problem 3

Tags: linear algebra, matrix, pigeonhole principle, ceiling function, inequalities, combinatorics proposed, combinatorics



Let $n$ and $k$ be positive integers, where $n > 1$ is odd. Suppose $n$ voters are to elect one of the $k$ cadidates from a set $A$ according to the rule of "majoritarian compromise" described below. After each voter ranks the candidates in a column according to his/her preferences, these columns are concatenated to form a $k$ x $n$ voting matrix. We denote the number of ccurences of $a \in A$ in the $i$-th row of the voting matrix by $a_{i}$ . Let $l_{a}$ stand for the minimum integer $l$ for which $\sum^{l}_{i=1}{a_{i}}> \frac{n}{2}$. Setting $l'= min \{l_{a} | a \in A\}$, we will regard the voting matrices which make the set $\{a \in A | l_{a} = l' \}$ as admissible. For each such matrix, the single candidate in this set will get elected according to majoritarian compromise. Moreover, if $w_{1} \geq w_{2} \geq ... \geq w_{k} \geq 0$ are given, for each admissible voting matrix, $\sum^{k}_{i=1}{w_{i}a_{i}}$ is called the total weighted score of $a \in A$. We will say that the system $(w_{1},w_{2}, . . . , w_{k})$ of weights represents majoritarian compromise if the total score of the elected candidate is maximum among the scores of all candidates. (a) Determine whether there is a system of weights representing majoritarian compromise if $k = 3$. (b) Show that such a system of weights does not exist for $k > 3$.